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Proposition 0.1. Let φ : E1 → E2 be a non-constant isogeny, then #φ−1(0) =
degs φ where degs is the separable degree of φ.

Proof. Silverman III 4.10 �

Exercise: i) Consider the elliptic curve E over C defined by y2 = x3+x. Compute
j invariant, and show that it has an endomorphism (actually an automorphism) [i]
given by

(x, y) 7→ (−x, iy)

.
ii) Show that g3(i) = 0 (use translation property), hence deduce that j(i) = 1728.
This should be the j-invariant obtained from part i. What is the homomorphism
of complex tori corresponding to i?

0.1. Dual isogenies and Tate Modules. Given a complex torus C/Λ1, and an
isogeny φ : C/Λ1 → C/Λ2 of degree m, we know from the theory of Riemann
surfaces that for almost all P ∈ C/Λ2, φ−1(x) has m elements. But since these
Riemann surfaces have a group structure, it follows that this is true for all P ∈ C/Λ2

by translating preimages by group elements. Thus kerφ is a finite subgroup of order
m in C/Λ1, in particular, it is contained in the m torsion C/Λ1[m] of C/Λ1. Since
there are m2 m-torsion points, the image of ker[m] in C/Λ2 is a subgroup of order
m, thus we may quotient out this group by to obtain another isogeny of degree m

φ̂ : C/Λ2 → /Λ3

It is easy to see that the composition φ̂◦φ is the the isogeny [m] : C/Λ1 → C/Λ1.
This construction generalises to the cases of an elliptic curve defined over an

arbitrary field using the Riemann Roch theorem, the isogeny φ̂ constructed is called
the dual isogeny to φ and it satsifes the following properties.

Proposition 0.2. Let φ : E1 → E2 be a non-constant isogeny of elliptic curves of

degree m, then exists a unique isogeny φ̂ : E2 → E1 of degree m such that

φ̂ ◦ φ = [m] on E1

φ ◦ φ̂ = [m] on E2

We have the following properties of φ̂ :
a) If ψ : E2 → E2 is another isogeny, we have

ψ̂ ◦ φ = φ̂ ◦ ψ̂
b) If ψ : E1 → E2 is another isogeny, we have

φ̂+ ψ = ψ̂ + φ̂

c) [̂m] = [m] and deg[m] = m2

d)
ˆ̂
φ = φ

1
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Proof. See Silverman, for the proof of the existence and uniqueness of φ, and the
proof of b). a) c) and d) then follow easily. �

Corollary 0.3. Let m be coprimes to char(K), then

E[m] ∼= Z/mZ× Z/mZ

Proof. Since deg[m] = m2 is coprime to charK, we have that [m] is a separable
map. Thus it follows from 0.1 that #E[m] = m2, similarly we have #E[d] = d2 for
all d|m. From this it follows that

E[m] ∼= Z/mZ× Z/mZ

is the only possibility. �

The following construction is hugely important in the theory of elliptic curves
and in general number theory. It was the first example of Galois represention
”coming from geometry,” its properties have provided an endless source of intuition
for theorems and conjectures that have been made since Tate first studied these
objects.

Let m be an integer coprime to charK, we have seen above that E[m] ∼= Z/mZ×
Z/mZ. However this group has considerably more structure if E is defined over
K. In fact if σ ∈ GK/K , it is easy to check that for P ∈ E[m](K), we have

σ(P ) ∈ E[m]. Therefore we obtain a representation

GK/K → AutE[m] ∼= GL2(Z/mZ)

The l-adic Tate module will be defined by patching together these representations
over powers of l to obtain a representation over Zl, much in the same way that Zl
is constructed as the inverse limit of Z/lnZ.

Definition 0.4. Let l be a prime number which is coprime to mboxcharK. The
l-adic Tate module of E, Tl(E) is the set given by

lim
→n

E[ln]

where the transition maps are given by

[l] : E[ln+1]→ E[ln]

The structure of Z/lnZ modules are compatible with the transition maps and
the actions of GK/K , hence Tl(E) has a natural structure of Zl-module. We obtain
a representation

GK/K → AutTl(E)

.

It follows from 0.3 that the Tl(E) ∼= Zl × Zl as Zl modules, thus picking a basis
for Tl(E), we obtain a representations

GK/K → GL2(Zl)

well defined up to conjugation.
The same construction works for the algebraic group K× with multiplication.

As a motiviating example let’s see what we obtain in this case.
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Example 0.5. Suppose K = Q, and consider the group variety Gm. Recall this
was the algebraic variety A1−{0}, so that Gm(L) = L× with group structure given
by multiplication. We have for any prime l, Gm[ln] is given by the lnth roots of
unity. We have a canonical isomorphism

Gal(Q(ζln)/Q) ∼= Z/lnZ×

An element of TlGm is given by a compatible system of lnth roots of unity (ζln)n
where ζlln+1 = ζln , and patching together the maps GQ/Q → Z/lnZ× we obtain a

character

χl : GQ/Q → Z×l
known as the l-adic cyclotomic character.

Exercise: Show that the action of g ∈ Z×l acts on TlGm by sending (ζln) to the

system given by ζgmodln
ln .

Therefore, for the group Gm over Q this representation is easy to describe,
however for elliptic curves, they can be considerably more complicated.

Tate modules provide a very useful tool for studying isogenies between elliptic
curves. Suppose φ : E1 → E2 is an isogeny of elliptic curves over K. Then

φ(E1[ln]) ⊂ E2[ln]

and we can patch these together for all n so that φl : Tl(E1) → Tl(E2). In fact it
is easy to see this is a map of Z-modules, therefore we obtain a homomorphism:

Hom(E1, E2)⊗Z Zl → HomZl
(TlE1, TlE2)

Furthermore if φ is defined over K, the map φl is compatible with the Galois
actions on the Tate modules so that we obtain a homomorphism

HomK(E1, E2)⊗Z Zl → HomGK/K
(E1, TlE2)

We have the following theorem:

Theorem 0.6. i) The homomorphism

Hom(E1, E2)⊗Z Zl → HomZl
(TlE1, TlE2)

is injective.
ii) The homomorphism

HomK(E1, E2)⊗Z Zl → HomGK/K
(E1, TlE2)

is an isomorphism when K is a finite field or a number field (it is alway injective
by part i)

Proof. i) Silverman III 7
ii) The case K is a finite field is due to Tate. When K is a number field,

this was proved Faltings, it was the main ingredient in his proof of the Mordell
conjecture. �

Part i) of the above immediately implies the following corollary.

Corollary 0.7. Hom(E1, E2) has rank at most 4 over Z.
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Important exercise: Read chapter 9 of section III in Silverman. This proves there
are only 3 possibilities for the endomorphism ring of an elliptic curve. End(E) can
only be Z, an order in a quadratic imaginary extension of K or an order in a quater-
nion algebra over Q.

The we refer to Chpater 8 of Silverman [AEC], for the following theorem. Al-
though the following construction is very imporant in general, it plays only a small
part in the proof of the theorems of Complex multiplication so we will only state
the result that we need.

Theorem 0.8 (Weil Pairing). There exists a non-degenerate, Galois invariant
pairing:

TlE × TlE → TlGm
Furthermore, if φ : E1 → E2 is an isogeny, then φ and φ̂ are adjoints for the

pairing, i.e.

e(φ(x), y) = e(x, φ̂(x))

for x ∈ TlE1, y ∈ Tl(E2)

0.2. The invariant differential. Recall that to any algebraic curve C we may
associate a K(C) vector space ΩC . We appply this construction for an elliptic
curve E.

Let E be an elliptic curve given by the usual Weierstrass equation.

Definition 0.9. The invariant differential ω of E is given by

dx

2y + a1x+ a3

Let P be any point in E, then we have an induced algebraic map

τP : E → E

given by
Q 7→ Q+ P

The following proposition justifies the name invariant differential.

Proposition 0.10. i) ω is non-zero hence generates the one dimensional K(E)
vectors space ΩE

ii) For any P ∈ E, we have τ∗Pω = ω

iii) The k-subspace of ΩE consisting of differentials df for which τ∗P df = df for
all P ∈E is one dimensional. A generator of this subspace is called an invariant
differential.

Proof. Silverman [AEC] II Section 5 �

Invariant differentials are useful because they allow us to linearise the compli-
cated addition law on E.

Proposition 0.11. Let φ, ψ : E1 → E2 be non-constant isogenies of elliptic curves
and ω an invariant differential on E2. Then φ∗ω, ψ∗ω ∈ ΩE1

are invariant differ-
entials on E1 and we have

(φ+ ψ)∗ω = φ∗ω + ψ∗ω

Proof. Silverman II Section 5. �
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The addition on the left is induced by the addition structure on E2 which is very
complicated while the addition on the left is simply addition in k vector spaces,
which is somewhat easier to understand.

The invariant differential will play a role in the definition of Elliptic curves with
comples multiplication because it wil allow us to relate the endomorphism ring of
R with the base field k.

Corollary 0.12. If charK = 0, then End(E) is commutative.

Proof. Let φ ∈ End(E), then since φ∗ω is also an invariant and the space of invari-
ant differentials is 1-dimensional, it follows that there exists an aφ ∈ k such that
φ∗ω = aφω. Then the above proposition shows that the association

φ 7→ aφ

is a ring homomorphism.
If φ is a non-zero isogeny, then φ is separable since we are working over char-

acteristic 0, so that aφ 6= 0. Therefore the map φ 7→ aφ is injective. Since k is
commutative so it End(E). �

Combining this with the classification of endomorphism rings shows that if
charK = 0, End(E) is either Z or an order in a quadratic imaginary field K.

0.3. Reduction of Elliptic curves. In this section let K be a local field with ring
of integers O and residue field k. Let π be a uniformiser of K and v the valuation
associated to the discrete valuation ring O. Given an elliptic curve E over K, we
want to reduce this modulo π.

Definition 0.13. Given a Weierstrass equation for E over K, with coefficients
a1, ..., a6, we say the equation is minimal if a1, ..., a6 ∈ O and v(∆) is minimal
among all Weierstrass equations for E subject to this condition.

It can be shown that reduced Weierstrass equations exists for all elliptic curves
E. Then given a minimal Weierstrass equation for E, the reduced curve Ẽ is given
by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Where ai ∈ k is the reduction of the coefficients ai modulo π.
Of course the reduced may be singular, but we have seen before that a Weierstrass

equation defines a non-singular curve if and only if ∆ 6= 0. This leads to the
following result.

Proposition 0.14. i) Any two minimal Weierstrass equation are related by a
change of variables

y = u3y′ + sx′ + t

x = u2x′ + r

where u, r, s, t ∈ O and u ∈ O×. Consequently v(∆) does not depend on the the
minimal Weierstrass equation chosen for E.

ii) The reduced curve is non-singular (hence an elliptic curve) if and only if
v(∆) = 0, for ∆ the discriminant of a minimal Weierstrass equation for E.

Proof. i) Silverman Chapter VII Section I.
ii) The discriminant of the reduced curve is ∆ mod π hence is non-zero if and

only if v(∆) = 0. �
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Definition 0.15. We say the elliptic curve E has good reduction if the curve Ẽ is
non-singular.

More generally let K be a number field and p a fnite place of K. Then we say
E has good reduction at p if E has good reduction considered as an elliptic curve
over Kp.

Given an elliptic curve over a local field K, let (x0 : x1 : x2) be a point in E for
an embedding given by a minimal Weiersrass equation. We may scale the xi by an
element of K so that x0, x1, x2 ∈ OK , and such that some xi ∈ O×K . Then reducing

the coefficients modulo m, we obtain a well defined element of Ẽ(k). This gives a
reduction map

Θ : E(K)→ ˜E(k)

Also given φ : E1 → E2 and isogeny defined over K, we may reduce mod π to
obtain an isogeny φ̃ : Ẽ1 → Ẽ2, which is characterised by the property that

φ̃ ◦Θ(x) = φ ◦Θ(x)

for any x ∈ E(K). We obtain thus a group homomorphism

HomK(E1, E2)→ Homk(Ẽ1, Ẽ2)

.


